
Technical Report

([WHQGHG

6LPSOH�&RORUHG�3HWUL�1HWV

Antonio Camurri and Alessandro Coglio

Dept. of Informatics, Systems, and Telecommunications (DIST)

Faculty of Engineering – University of Genoa

Viale Causa 13
16145 Genova, Italy

E-mail: {music, tokamak}@dist.unige.it

December 1997

1

Extended Simple Colored Petri Nets

Antonio Camurri and Alessandro Coglio

Abstract

We present a new class of Petri Nets, called Extended Simple Colored Petri Nets

(ESCP-nets), which are essentially Simple Colored Petri Nets (SCP-nets) with three added

features: first, there is a built-in type of real numbers; second, tokens can be forced to wait

in places; third, an interface specifies how the Net can be externally supervised. Even if

these added features also add complexity, ESCP-nets still constitute a valuable trade-off

between the simplicity of P-nets and the convenience of CP-nets. We have successfully

employed ESCP-nets in an industrial project for Demag-Italimpianti (the largest Italian

industry producing plants), consisting in the realization of software tools for the

development and execution of plants built according to an architecture where an ESCP-net

executor is supervised by means of declarative rules about the marking of the Net. Even if

we have presently employed ESCP-nets in the field of plant simulation only, their

characteristic might be well-suited to other fields as well.

1. Introduction

In this report we present a new class of Petri Nets, called Extended Simple Colored

Petri Nets (ESCP-nets). As implied by their name, ESCP-nets constitute an extension

of Simple Colored Petri Nets (SCP-nets) [3]. The extension substantially consists of

three features. First, besides user-defined enumerative types there is a built-in (non-

enumerative) type of real numbers, by which continuous (attributes of) entities can be

modeled or specified. Second, tokens can be forced to wait (non-deterministic)

amounts of time before being removed from a place, so that time durations can be

modeled or specified. Third, an ESCP-net comes equipped with an interface through

which an external supervisor can constrain the behavior of the Net.

The three above features have been inspired by the field of plant simulation,

precisely that kind of simulation aimed at obtaining experimental data about the

working of plants (e.g. throughputs, utilization percentages, buffer sizes, and so on).

Real numbers can model continuous quantities, e.g. weights, geometrical sizes. Tokens

waiting in places can model durations of processes, e.g. the machining of a

manufacturing part. Decisions depending on the overall state of a plant (e.g. to

optimally allocate resources) can be modeled by an external supervisor, which can

constrain the behavior of an ESCP-net through the specified interface. ESCP-nets are

in fact an extremely valuable tool for the development of plant simulators [2], because

they can conveniently express most of the crucial aspects of plants (i.e. flows of

materials and parts, concurrency and synchronization of processes, use of shared

resources, etc.) in a high-level, clear, and readable way. We have successfully

employed ESCP-nets in an industrial project for Demag-Italimpianti (the largest Italian

industry producing plants), consisting in the realization of software tools for the

development and execution of plant simulators built according to an architecture [1]

where an executor of ESCP-nets [4] is supervised by means of declarative rules about

the marking of the Net. By means of our tools, correct, readable, and easy-to-maintain

simulators can be developed with dramatical reductions of development times and

errors.

The advantages of ESCP-nets over “classical” Petri Nets (P-nets) [7, 6] and

Colored Petri Nets [5] are substantially the same as those of SCP-nets: while providing

2

much more convenience than P-nets, ESCP-nets can be more easily implemented and

seem to be more amenable to formal analysis than CP-nets. Even if, of course, their

three added features (with respect to SCP-nets) also add complexity, ESCP-nets are

still much less complex than CP-nets. In particular, no general programming language

is needed to define types and operations over them, because operations upon

enumerative items and real numbers can be easily expressed, for example, by

integrating built-in operations over real numbers with argument-result enumerations

(as we have done in our industrial software tools).

In Section 2 we formally present ESCP-nets. Such a presentation assumes

knowledge of that of SCP-nets in [3] (anyway, the formal definitions we give here are

self-contained, i.e. they are not based upon those for SCP-nets). In Section 3 we

outline future work. The mathematical concepts and notations used in Section 2 are

explained in the Appendix.

2. Formal Presentation

As we present formal definitions, we instantiate them to the very simple ESCP-net

depicted in Figure 1, which models an artificial, abstract process where unpainted

cubes and spheres (of various sizes) are painted with red, green, or blue paint, by

means of suitable subtractive color syntheses of cyan, magenta, and yellow paint.

2.1 Topology

The topology of an ESCP-net is defined exactly like that of an SCP-net. There are

places, transitions, and arcs connecting them.

Definition 1. A topology is a quadruple

T = 〈P, T, A, χ〉
where:

(1) P is a finite set whose elements are called places;

(2) T is a finite set whose elements are called transitions;

(3) A is a finite set whose elements are called arcs;

(4) P ∩ T = ∅;

(5) χ ∈ [A → (P × T) ∪ (T × P)] and is called connection.

For each a ∈ A, let p ∈ P and t ∈ T such that χ(a) = 〈p, t〉 or χ(a) = 〈t, p〉; we define:

(1) χP(a) = p;

(2) χT(a) = t.

For each x ∈ P ∪ T, we define the sets In(x) and Out(x) of the incoming arcs and

outgoing arcs of x as follows:

(1) In(x) = { a ∈ A | ∃ y ∈ P ∪ T : χ(a) = 〈y, x〉 };

(2) Out(x) = { a ∈ A | ∃ y ∈ P ∪ T : χ(a) = 〈x, y〉 }.

For each p ∈ P and t ∈ T, we say that:

(1) p is an input place of t and t is an output transition of p iff In(t) ∩ Out(p) ≠ ∅;

(2) p is an output place of t and t is an input transition of p iff In(p) ∩ Out(t) ≠ ∅.

In Figure 1 the topology consists of five places (UNPAINTED, PAINTING,

PAINTED, TANKS1, and TANKS2), two transitions (START
1
 and END), and eight arcs

(whose names have been left unspecified to reduce graphical cluttering), with the

connection defined as graphically shown.

1 For now, ignore its shading.

3

2.2 Token Taxonomy

As mentioned in Section 1, each ESCP-net has, besides user-defined enumerative

types, a pre-defined built-in type of real numbers (which is of course non-enumerative).

More precisely, the distinguished symbol R is a base type of any ESCP-net. R has no

unif (1.5 ∗ area (shp;dim) ;

unif (2 ∗ area (shp;dim))

const (0)

const (0)

const (0)

const (0)

Primary;R

Primary;R

shp;dim;none

shp;dim;c

Shape;R;Color

Shape;R;Color

Shape;R;Color

shp;dim;c

pc2 ; q2 − 0.3 ∗ area (shp;dim)

pc1 ; q1 − 0.3 ∗ area (shp;dim)

TANKS2

TANKS1

END

START

PAINTED

PAINTING

UNPAINTED

Token Taxonomy

Primary

Color

yellow

magenta

cyan

sphere

cube

none

Shape

Secondary

blue

green

red

Variables:

c : Color

pc1, pc2 : Primary

shp : Shape

dim, q1, q2 : R

Functions:

subsyn : Primary;Primary → Color

area : Shape;R → R

−, ∗ : R;R → R

Predicates:

≠ : Primary;Primary

≥ : R;R

Parametric t.p.f.’s:

const : R

unif : R;R

shp ; dim ; subsyn (pc1;pc2)

T

(pc1 ≠ pc2 &

((q1 ≥ 0.3 ∗ area (shp,dim) &

((q2 ≥ 0.3 ∗ area (shp,dim)))

pc2;q2

pc1;q1

cy.;50
mg.;27
yl.;103

cy.;41
mg.;80
yl.;76

cb.;2.5;gr.

cb.;2;nn.

sp.;3;nn.

Figure 1: A simple example of ESCP-net.

4

super-types or sub-types, and its base tokens are all the real numbers
2
. R and real

numbers can be freely concatenated with user-defined base types and base tokens, to

make up types and tokens. We in fact give the following definition.

Definition 2. A token taxonomy X is a finite non-empty DAG of symbols distinct from

R and E, such that no symbol is isolated in the DAG.

The set YB of base types is

YB = NTerm(X) ∪ {R}.

For each y, y′ ∈ YB, we say that y is a super-type of y′ and that y′ is a sub-type of y iff

R ∉ {y, y′} ∧ y →X y′.
The set Y of types is the smallest set such that

Y = YB ∪ { y;y′ string | y, y′ ∈ Y }.
For each y, y′ ∈ Y, we say that y is a super-type of y′ and that y′ is a sub-type of y iff

for some y1, …, yn, y1′, …, yn′ ∈ YB we have:

(1) y = y1;…;yn ∧ y′ = y1′;…;yn′;
(2) ∀ i ∈ {1,…,n} : (yi = yi′ ∨ yi is a super-type of yi′);
(3) ∃ i ∈ {1,…,n} : yi ≠ yi′.
The family {Ky}y∈Y of tokens is the smallest family such that:

(1) ∀ y ∈ YB − {R} : Ky = { k | k ∈ Term(X) ∧ y →X k };

(2) KR = R;

(3) ∀ y, y′ ∈ Y : Ky;y′ = { k;k′ string | k ∈ Ky ∧ k′ ∈ Ky′ }.

The set K of all tokens is thus

K = Ky
y Y∈
� .

The set KB of base tokens is

KB = Ky

y Y∈ B

� .

For each k ∈ K and y ∈ Y, we say that k has type y iff

k ∈ Ky.

The token taxonomy X only specifies user-defined base types and base tokens.

Therefore, X must not contain the distinguished symbol R to avoid ambiguities
3
. Note

that real numbers are used in token strings as if they were symbols. In fact, with slight

abuse, we really regard the base tokens of type R as symbols in bijective

correspondence with real numbers (and not as real numbers themselves).

In Figure 1 there is a type Primary with tokens cyan, magenta, and yellow, and a

type Secondary with tokens red, green, and blue
4
. Color is a super-type of both

Primary and Secondary, and its tokens are the six above plus none. There is also a

type Shape with tokens cube and sphere. Other examples of types are Primary;R and

Shape;R;Color; for instance, Color;R is a super-type of Primary;R. Other examples of

tokens are cyan;41 (which can represent 41 liters of cyan paint), of type Primary;R and

Color;R, and cube;2.5;green (which can represent a green cube whose edge measures

2.5 meters), of types Shape;R;Secondary and Shape;R;Color.

2 However, all our concepts can be straightforwardly adapted to cases of practical implementations,

where the base tokens of R are only a finite subset of R (e.g. all the floating point numbers

representable in a given 32-bit format).
3 The reason why it is also required that the symbol E does not appear in X will be clarified below.
4 In subtractive color synthesis, cyan, magenta, and yellow are primary colors, while red, green, and

blue are secondary colors.

5

2.3 Time Probability Function

As we will see below, the amount of time a token must wait in a place is randomly

generated according to a time probability function (t.p.f.)
5
, which assigns a probability

value to each natural number, where natural numbers represent discrete time durations

in a given unit. The concept of t.p.f. is formalized as follows.

Definition 3. A time probability function (t.p.f.) is a family

{πi} i∈N

of real numbers such that:

(1) ∀ i ∈ N : 0 ≤ πi ≤ 1;

(2) π ii∈∑
N

=1.

Π is the set of all t.p.f.’s.

Of course, each πi is the probability of the time duration i ∈ N, and their total

sum must yield 1.

As we will see, in Figure 1 we make use of t.p.f.’s Unif(n1, n2), with n1, n2 ∈ N

and n1 ≤ n2, characterized by πi = 1 / (n2 − n1 + 1) for all i such that n1 ≤ i ≤ n2, and

πi = 0 for all i such that i < n1 or i > n2. So, a t.p.f. Unif(n1, n2) can be used to generate

a uniformly random time duration between n1 and n2 (inclusive). In Figure 1 we also

make use of t.p.f.’s Const(n), with n ∈ N, characterized by πn = 1, and πi = 0 for all

i ≠ n. So, a t.p.f. Const(n) can be used generate a deterministic (i.e. constant) time

duration n.

2.4 Signature

Signatures of ESCP-nets are like those of SCP-nets, but in addition to variables,

functions, and predicates, they also specify symbols denoting parametric t.p.f.’s, i.e.

functions mapping tokens to t.p.f.’s. Parametric t.p.f.’s, as we will see, provide the

base of our very flexible generation of waiting times, which allows different tokens to

wait different amounts of time in a same place.

Definition 4. Given a token taxonomy X, a signature for X is a quadruple

S = 〈{Vy}y∈Y, {Fy,y′}y,y′∈Y, {Ry}y∈Y, {Hy}y∈Y〉
where:

(1) {Vy}y∈Y is a family of pairwise disjoint sets of symbols called variables;

(2) {Fy,y′}y,y′∈Y is a family of pairwise disjoint sets of symbols called functions;

(3) {Ry}y∈Y is a family of pairwise disjoint sets of symbols called predicates;

(4) {Hy}y∈Y is a family of pairwise disjoint sets of symbols called parametric t.p.f.’s;

(5) ()V F R Hyy Y y yy y Y yy Y yy Y∈ ′′∈ ∈ ∈
∪ ∪ ∪� � � �,,

 is finite.

The sets V, F, R, and H of all variables, functions, predicates, and parametric t.p.f.’s

are thus

V = Vy
y Y∈
� , F = Fy y

y y Y
,

,
′

′∈
� , R = Ry

y Y∈
� , and H = Hy

y Y∈
� .

A type is associated to each parametric t.p.f.

In Figure 1 there are seven variables (c, pc1, pc2, shp, dim, q1, and q2), four

5 T.p.f.’s and parametric t.p.f.’s (see below) were respectively called time probability distributions and

distribution families in the informal description of ESCP-nets we gave in [2]. Anyway, t.p.f. and

parametric t.p.f. are the preferred terms and are in fact used in formal definitions here.

6

functions (subsyn, area, −, and ∗), two predicates (≠ and ≥), and two parametric

t.p.f.’s (const and unif), with the indicated associated types.

2.5 Interpretation

An interpretation specifies the semantics of functions, predicates, and parametric

t.p.f.’s of a signature. The semantics of a parametric t.p.f. maps tokens of the

associated type to t.p.f.’s, while the semantics of a function or predicate is analogous

to that in an SCP-net. However, there is one difference. Since many operations

involving real numbers are partial (e.g. division is not defined if the divisor is null), we

explicitly represent partialness by allowing the semantics of a function, predicate, or

parametric t.p.f. to return, upon certain tokens (containing real numbers or not, for

uniformity), the distinguished symbol E (which, as required in Definition 2, must not

appear in the token taxonomy to avoid ambiguities with base tokens), which denotes

an “error”. We therefore give the following definition.

Definition 5. Given a token taxonomy X and a signature S for X, an interpretation for

X and S is a triple

I = 〈φ, ρ, η〉
where:

(1) φ ∈ [Fy,y′ → [Ky → Ky′ ∪ {E}]] y,y′∈Y and is called function interpretation;

(2) ρ ∈ [Ry → [Ky → B ∪ {E}]] y∈Y and is called predicate interpretation;

(3) η ∈ [Hy → [Ky → Π ∪ {E}]] y∈Y and is called parametric t.p.f. interpretation.

In Figure 1, the semantics of subsyn models the subtractive color synthesis of

two primary colors, as follows:

φ(subsyn)(cyan;cyan) = cyan ,

φ(subsyn)(cyan;magenta) = blue ,

φ(subsyn)(cyan;yellow) = green ,

φ(subsyn)(magenta;cyan) = blue ,

φ(subsyn)(magenta;magenta) = magenta ,

φ(subsyn)(magenta;yellow) = red ,

φ(subsyn)(yellow;cyan) = green ,

φ(subsyn)(yellow;magenta) = red ,

φ(subsyn)(yellow;yellow) = yellow .

The semantics of area computes the surface area of a cube or sphere, as follows

(pi ∈ R is the ratio of a circumference measure to its diameter):

∀ x ∈ R : φ(area)(cube;x) = 6 ⋅ x2
,

∀ x ∈ R : φ(area)(sphere;x) = 4 ⋅ pi ⋅ x2
.

The semantics of − and ∗ are respectively subtraction and multiplication of real

numbers. The semantics of ≠ is inequality of primary colors. The semantics of ≥ is the

greater-than-or-equal-to relation over real numbers. The semantics of const maps a

real number to the deterministic t.p.f. of the integer value obtained by rounding it,

provided such a value is non-negative:

∀ x ∈ R : η(const)(x) = if (Round(x) ≥ 0) then Const(Round(x)) else E.

Finally, the semantics of unif substantially maps two real numbers to the uniform t.p.f.

between the integer values obtained by rounding them, provided such values are non-

negative and the first is not greater than the second:

7

∀ x1, x2 ∈ R : η(unif)(x1;x2) = if (0 ≤ Round(x1) ≤ Round(x2))

then Unif(Round(x1), Round(x2)) else E.

2.6 Expressions

Expressions for ESCP-nets are built in close analogy with those for SCP-nets.

Definition 6. Given a token taxonomy X and a signature S for X, the family {Ey}y∈Y of

expressions over X and S is the smallest family such that:

(1) ∀ y ∈ Y : Ky ∪ Vy ⊆ Ey;

(2) ∀ y, y′ ∈ Y : { f(e) string | f ∈ Fy,y′ ∧ e ∈ Ey } ⊆ Ey′;

(3) ∀ y, y′ ∈ Y : { e;e′ string | e ∈ Ey ∧ e′ ∈ Ey′ } ⊆ Ey;y′;

(4) ∀ y, y′ ∈ Y, y super-type of y′ : Ey′ ⊆ Ey.

The set E of all expressions is thus

E = E y
y Y∈
� .

For each e ∈ E and y ∈ Y, we say that e has type y iff

e ∈ Ey.

We define the function Var over E as follows:

(1) ∀ k ∈ K : Var(k) = ∅;

(2) ∀ v ∈ V : Var(v) = {v};

(3) ∀ f(e) ∈ E : Var(f(e)) = Var(e);

(4) ∀ e;e′ ∈ E : Var(e;e′) = Var(e) ∪ Var(e′).

Examples of expressions appearing in Figure 1
6
 are shp;dim;subsyn(pc1;pc2), of

type Shape;R;Color, as well as ∗(0.3;area(shp;dim)) (for ∗ we use a kind of infix

notation to improve clarity), of type R.

2.7 Guards

Guards for ESCP-nets are also built in close analogy with those for SCP-nets.

Definition 7. Given a token taxonomy X and a signature S for X, the set G of guards

over X and S is the smallest set such that:

(1) TRUE ∈ G;

(2) ∀ y ∈ Y : { r(e) string | r ∈ Ry ∧ e ∈ Ey } ⊆ G;

(3) { (∼ g) string | g ∈ G } ⊆ G;

(4) { (g1 & g2) string | g1, g2 ∈ G } ⊆ G.

We define the function Var over G as follows:

(1) Var(TRUE) = ∅;

(2) ∀ r(e) ∈ G : Var(r(e)) = Var(e);

(3) ∀ (∼ g) ∈ G : Var(∼ g) = Var(g);

(4) ∀ (g1 & g2) ∈ G : Var(g1 & g2) = Var(g1) ∪ Var(g2).

Examples of guards appearing in Figure 1 are TRUE, ≠(pc1;pc2), as well as

(≥(q1;∗(0.3;area(shp;dim))) & ≥(q2;∗(0.3;area(shp;dim)))) (for ≠ and ≥ we use a

kind of infix notation to improve clarity).

6 For now, ignore the underlining of some variable occurrences in them.

8

2.8 Stochastic Times

Expressions and guards are syntactical entities respectively evaluating to tokens and

booleans. Analogously, stochastic times are syntactical entities evaluating to t.p.f.’s.

They are simply built out of expressions and parametric t.p.f.’s, as formalized below.

Definition 8. Given a token taxonomy X and a signature S for X, the set ST of

stochastic times over X and S is

ST = { h(e) | h ∈ Hy ∧ e ∈ Ey }.

We define the function Var over ST as follows:

∀ h(e) ∈ ST : Var(h(e)) = Var(e).

The function Var collects all the variables occurring in a stochastic time.

Examples of stochastic times appearing in Figure 1 are const(0), as well as

unif(∗(1.5;area(shp;dim));∗(2;area(shp;dim))).

2.9 Binding and Evaluation

The concepts of binding and evaluation in ESCP-nets are analogous to those in

SCP-nets. The difference is that also stochastic times must be evaluated, and that

errors must be taken into account.

Definition 9. Given a token taxonomy X, a signature S for X, and an interpretation I

for X and S, let V′ ⊆ V be a set of variables; a binding for V′ is a function

β ∈ [(Vy ∩ V′) → Ky] y∈Y.

Let E′ ⊆ E be the largest subset of E such that Var e
e E

()
∈ ′� ⊆ V′; the evaluation of E′

with β is defined as follows:

(1) ∀ k ∈ K : β(k) = k;

(2) ∀ f(e) ∈ E′ : β(f(e)) = if (β(e) = E) then E else φ(f)(β(e));

(3) ∀ e;e′ ∈ E′ : β(e;e′) = if (β(e) = E ∨ β(e′) = E) then E else β(e);β(e′).
Let G′ ⊆ G be the largest subset of G such that Var g

g G
()

∈ ′� ⊆ V′; the evaluation of

G′ with β is defined as follows:

(1) β(TRUE) = T;

(2) ∀ r(e) ∈ G′ : β(r(e)) = if (β(e) = E) then E else ρ(r)(β(e));

(3) ∀ (∼ g) ∈ G′ : β(∼ g) = if (β(g) = E) then E else if (β(g) = F) then T else F;

(4) ∀ (g1 & g2) ∈ G′ : β(g1 & g2) = if (β(g1) ∈ {F, E}) then β(g1) else β(g2).

Let ST′ ⊆ ST be the largest subset of ST such that Var st
st ST

()
∈ ′� ⊆ V′; the evaluation

of ST′ with β is defined as follows:

∀ h(e) ∈ ST′ : β(h(e)) = if (β(e) = E) then E else η(h)(β(e)).

An expression evaluates to E iff the semantics of some function occurring in it

returns E. In other words, errors are “propagated” from sub-expressions to the whole

expression.

A guard evaluates to E only if some expression occurring in it does or the

semantics of some predicate occurring in it returns E. Note however that the converse

does not hold, because of the way conjunctions are evaluated: if the first conjunct

evaluates to F, the conjunction evaluates to F even if the second conjunct evaluates to

E. This short-circuited evaluation is very useful for a guard expressing a condition such

as (x ≠ 0 ∧ 20 / x > 7), which yields F and not E in case x = 0.

A stochastic time evaluates to E iff its expression does or the semantics of its

9

parametric t.p.f. returns E.

For instance, in the ESCP-net in Figure 1, if a binding β is such that

β(pc1) = magenta,

β(pc2) = yellow,

β(shp) = cube,

β(dim) = 2,

β(q1) = 80,

β(q2) = 103,

we have that

β(subsyn(pc1;pc2)) = red,

β(area(shp;dim)) = 24,

β(q1 ≥ 0.3 ∗ area(shp;dim)) = T,

β(unif (1.5 ∗ area(shp;dim) ; 2 ∗ area(shp;dim)) = Unif (36, 48),

β(q2 − 100) = 3

β(const(−6)) = E.

2.10 Token System

The concept of token system of an ESCP-net is closely analogous to that of an

SCP-net.

Definition 10. A token system is a triple

K = 〈X, S, I〉
where:

(1) X is a token taxonomy;

(2) S is a signature for X;

(3) I is an interpretation for X and S.

2.11 Labeling

Like an SCP-net, in an ESCP-net each place is labeled by a type, each arc by an

expression, and each transition by a guard. In addition, each place is also labeled by a

stochastic time, used to determine how much time tokens added to the place by some

firing must wait before they can be removed from the place (as we will explain below).

Definition 11. Given a topology T and a token system K, a labeling of T with K is a

quadruple

L = 〈ψ, ε, γ, τ〉
where:

(1) ψ ∈ [P → Y] and is called type function;

(2) ε ∈ [A.a → Eψ(χP(a))] and is called expression function;

(3) γ ∈ [T → G] and is called guard function;

(4) τ ∈ [P → ST] and is called time function.

For each t ∈ T, we define

Var(t) = Var a
a In t Out t

(())
() ()

ε
∈ ∪
� ∪ Var a

a Out t

((()))
()

τ χ
P

∈
� ∪ Var(γ(t)).

Analogously to SCP-nets, the function Var collects all the variables surrounding

the transition. Note that also the variables occurring in stochastic times of output

places are included. In fact, as we will see in Definition 16, the effects of a transition

10

firing is also determined by such stochastic times.

The types, stochastic times, expressions, and guards labeling places, arcs, and

transitions in Figure 1 are indicated near the corresponding circles, arrows, and

rectangles.

2.12 Control Interface

As mentioned in Section 1, an ESCP-net comes equipped with an interface through

which its behavior can be constrained by an external supervisor. This interface consists

in some transitions tagged as “controlled”, and some of their surrounding variables

also tagged as “controlled”. The meaning is that an external supervisor has the

capability of allowing or forbidding the firing of each controlled transition, and, in the

former case, it also has the capability of designating which tokens can be assigned to

the controlled variables. The concept of control interface formally specifies which are

the controlled transitions and variables of an ESCP-net.

Definition 12. Given a topology T, a token system K, and a labeling L of T with K, a

control interface for T, K, and L is a pair

C = 〈CT, ξ〉
where:

(1) CT ⊆ T is a set of transitions called controlled transitions;

(2) ξ ∈ [CT.t → PPω(Var(t))]; for each t ∈ CT, the variables in ξ(t) are called

controlled variables of t.

In Figure 1, the shading of START indicates that it is a controlled transition, and

the underlining of the surrounding occurrences of shp, dim, pc1, and pc2 indicates that

they are controlled variables. This means that an external supervisor has the capability

of deciding when a new painting process can start (by allowing START to fire), which

of the unpainted cubes or spheres present in UNPAINTED must be painted (by

designating suitable tokens to be assigned to shp and dim), and which primary color

tanks are used (by designating suitable tokens to be assigned to pc1 and pc2).

2.13 Extended Simple Colored Petri Net

As expected, an ESCP-net consists of a topology, a token system, a labeling, and a

control interface.

Definition 13. An Extended Simple Colored Petri Net (ESCP-net) is a quadruple

ESCPN = 〈T, K, L, C〉
where:

(1) T is a topology;

(2) K is a token system;

(3) L is a labeling of T with K;

(4) C is a control interface for T, K and L;

(5) ∀ t ∈ T : ∀ v ∈ Var(t) : (t ∈ CT ∧ v ∈ ξ(t)) ∨
(∃ a ∈ In(t) : ∃ e, e′ ∈ E : ε(a) ∈ { v, e;v, v;e, e;v;e′ }).

It is required that, for each transition, each surrounding variable either is

controlled (thus implying that the transition is also controlled) or constitutes,

concatenated with zero or more other expressions, the expression labeling some

incoming arc of the transition. This assures that, provided external supervision

designates finitely many bindings for controlled variables, each transition is enabled

11

with only a finite number of bindings (see Definition 16), because each place is always

marked by finitely many tokens (see Definition 15). For instance, if a (non-controlled)

variable of type R only appeared as the expression labeling an outgoing arc of a

transition, there might be infinitely many bindings, one for each real number
7
. The

requirement also allows, given bindings for controlled variables from external

supervision, an easy computation of the bindings with which transitions are enabled,

without the need of inverting any function. For instance, if a (non-controlled) variable

only appeared as “argument expression” of a function on some incoming arc of a

transition, it would be necessary to invert the function to find tokens to assign to the

variable such that the arc expression evaluates to some token marking the input place

connected to the transition through the arc.

2.14 Timed Token

The waiting of tokens in places is achieved by attaching a natural number to each

token marking a place. Such a number expresses, in some time unit, the (discrete)

amount of time the token must wait before it can be removed from the place. These

natural numbers are meant to be decremented as time passes. The following definition

formalizes tokens with natural numbers attached.

Definition 14. Given a token taxonomy X, the family {TKy}y∈Y of timed tokens

(T-tokens) is defined as follows:

∀ y ∈ Y : TKy = { k:θ | k ∈ Ky ∧ θ ∈ N }.

The set of all T-tokens is thus

TK = TKy
y Y∈
� .

If k:θ ∈ TK, θ is called waiting time of k:θ.

If k:θ ∈ TK and y ∈ Y, we say that k:θ has type y iff

k:θ ∈ TKy.

T-tokens are organized as a family indexed by types, in complete analogy to

tokens. In fact, the types of a T-token coincide with those of the constituent token.

2.15 Marking

While in an SCP-net a marking associates a multiset of tokens to each place, in an

ESCP-net a marking associates a multiset of T-tokens to each place (all having the

type labeling the place, of course), as expected.

Definition 15. Given an ESCP-net ESCPN, a marking for ESCPN is a function

µ ∈ [P.p → MMω(TKψ(p))].

M is the set of all markings.

The marking of the ESCP-net in Figure 1 is indicated by the tokens inside places

(we have in fact omitted waiting times, which are all null, to fit strings in circles; for

the same reason, we have used abbreviations for base token symbols). The time unit

for the ESCP-net is assumed to be 1 minute.

7 Even if there were only a finite number of tokens of type R, as in practical implementations, in

general they would still be too many to manage (e.g. as many as floating point numbers in some 32-bit

format).

12

2.16 Enabling and Firing

Transition firings in ESCP-nets are analogous to those in SCP-nets. The difference is

that errors and waiting times must be taken into account. Concerning errors, a

transition is defined as being not enabled with a binding in case the guard, a

surrounding arc expression, or a stochastic time of an output place evaluates to E. For

what concerns waiting times, only T-tokens with null waiting times can be removed

from a place. When a T-token must be added to a place, its (initial) waiting time is

randomly generated from the t.p.f. which the stochastic time labeling the place

evaluates to. The following definition formalizes these concepts.

Definition 16. Given an ESCP-net ESCPN, let:

(1) µ ∈ M;

(2) t ∈ T;

(3) β be a binding for Var(t).

We say that t is enabled with β in µ iff:

(1) ∀ a ∈ In(t) ∪ Out(t) : β(ε(a)) ≠ E;

(2) ∀ a ∈ Out(t) : β(τ(χP(a))) ≠ E;

(3) β(γ(t)) = T;

(4) ∀ p ∈ P : { } β ε(()):
() ()

a
a In t Out p

0 m∈ ∩� ⊆ µ(p).

If t is enabled with β in µ, and if

ζ ∈ [Out(t) → { z ∈ R | 0 ≤ z < 1 }],

the marking µ′ produced by t firing with β and ζ in µ is defined as follows:

∀ p ∈ P : µ′(p) = µ β ε() (()):
() ()

p a
a In t Out p

−

∈ ∩
{ } 0 m� ∪ { }β ε(()): ()

() ()

a a
a Out t In p

Θ m
∈ ∩
� ,

where

∀ a ∈ Out(t), β(τ(χP(a))) = {πi} i∈N : Θ(a) = min { i ∈ N | π
h

h i∈
∑
{ ,..., }0

> ζ(a) }.

In order to formalize the random generation of waiting times for tokens added to

the output places of t, we have defined the firing with respect to a non-negative real

number less than 1, ζ(a), associated to each outgoing arc a of t, which represents a

uniformly random value. This real number is “mapped” to a natural number Θ(a)

according to the evaluated t.p.f. {πi} i∈N of the corresponding output place: Θ(a) is the

smallest natural number such that π0 + … + πΘ(a) is greater than ζ(a). In this way, if

ζ(a) is uniformly random, Θ(a) is random according to the t.p.f. {πi} i∈N.

For instance, in the ESCP-net in Figure 1, consider the transition START and the

binding β for Var(START) such that

β(pc1) = magenta,

β(pc2) = yellow,

β(shp) = cube,

β(dim) = 2,

β(q1) = 80,

β(q2) = 103.

We have that START is enabled with β, and the firing has the effect of removing

cube;2;none from UNPAINTED, adding cube;2;red to PAINTING, changing

magenta;80 in TANKS1 to magenta;72.8, and changing yellow;103 in TANKS2 to

yellow;95.8. The waiting times of the tokens of the new marking are all 0, except the

13

token in PAINTING, whose waiting time is between 36 and 48 minutes.

In general, the firing of START represents the start of a painting processes of a

cube or sphere, which consumes quantities of paint proportional (according to a factor

0.3 liters per square meter) to the surface area of the cube or sphere, and which takes a

uniformly random time between two values also proportional (according to factors 1.5

and 2 minutes per square meter) to the surface area of the cube or sphere. END can fire

only after the waiting time of the token in PAINTING has become null. Thus, stochastic

times allow different tokens to wait different amounts of time in a same place.

3. Future Work

The main direction of future work consists in the study of formal analysis (and

synthesis as well) methods for ESCP-nets. This work is closely related to that for

SCP-nets. We have in fact already discovered some formal results which relate some

properties of ESCP-nets to analogous properties of SCP-nets. For instance, for each

ESCP-net there exist an SCP-net and a mapping from the markings of the ESCP-net to

those of the SCP-net, such that for each firing in the ESCP-net there is a

corresponding firing in the SCP-net which preserves the correspondence (according to

the mapping) between ESCP-net markings and SCP-net markings. This implies that

boundedness of the SCP-net is sufficient for boundedness of the ESCP-net, and

reversibility of the SCP-net is necessary for reversibility of the ESCP-net. So, formal

analysis carried upon the SCP-net can give useful information about properties of the

ESCP-net. We have not presented these formal results here because they are still under

study and we prefer to give a more systematic account in the future.

Although ESCP-nets have arisen in the field of plant simulation, and presently

we have employed them in this field only, we think that their characteristics can be

well-suited to other fields as well. So, we have planned to investigate other fields in

which ESCP-nets might be successfully employed.

Appendix

In this appendix we explain the mathematical concepts and notations used in Section 2.

B = {T, F} is the set of booleans.

N = {0, 1, 2, …} is the set of natural numbers.

R is the set of real numbers. If x ∈ R, Round(x) is the integer number obtained

by rounding x (down if the fraction part is less than 0.5, up otherwise).

If A1, …, An (n ≥ 2) are sets, A1 × … × An is the cartesian product of A1, …, An,

i.e. the set of all n-tuples 〈a1, …, an〉 where a1 ∈ A1, …, an ∈ An.

If A and B are sets, [A → B] is the set of all (total) functions with domain A and

codomain B.

If A and B are sets, and B(a) ⊆ B is a subset of B for each a ∈ A, [A.a → B(a)]

is the set of all functions f ∈ [A → B] such that f(a) ∈ B(a) for each a ∈ A.

If A and B are sets, and δa ∈ B is an element of B for each a ∈ A, {δa}a∈A is the

family of elements of B indexed by the elements of A, i.e. the function f ∈ [A → B]

such that f(a) = δa for each a ∈ A. If A = A′ × A′ for some set A′, we just write

{δa1,a2
}a1,a2∈A′ instead of {δ〈a1,a2〉}〈a1,a2〉∈A.

If B = {Ba}a∈A and C = {Ca}a∈A are families of pairwise disjoint sets,

[Ba → Ca] a∈A is the set of all functions f ∈ []B Caa A aa A∈ ∈
→� � such that f(b) ∈ Ca

for each a ∈ A and b ∈ Ba.

14

If A is a set, PPω(A) is the set of all finite subsets of A.

If A is a set, MMω(A) is the set of all finite multisets over A, where a finite multiset

over A is a function ms ∈ [A → N] such that ms a
a A

()
∈∑ ∈ N. If a ∈ A, ms(a) is the

multiplicity of a in ms. If a ∈ A, {a}m is the multiset ms ∈ MMω(A) defined by

ms(a) = 1, and ms(a′) = 0 for each a′ ∈ A − {a}. If ms1, ms2 ∈ MMω(A), ms1 ∪ ms2 is

the multiset ms ∈ MMω(A) defined by ms(a) = ms1(a) + ms2(a) for each a ∈ A. If

ms1, ms2 ∈ MMω(A), we write ms1 ⊆ ms2 to express that ms1(a) ≤ ms2(a) for each a ∈ A.

If ms1, ms2 ∈ MMω(A), and ms1 ⊆ ms2, ms2 − ms1 is the multiset ms ∈ MMω(A) defined by

ms(a) = ms2(a) − ms1(a) for each a ∈ A.

If A is a set, a directed graph of elements of A is a pair Γ = 〈N, E〉 where N ⊆ A

is the set of nodes, and E ⊆ N × N is the set of edges. Γ is empty iff N = ∅. Γ is finite

iff N is finite. If a, a′ ∈ N, we write a →Γ a′ to express that there are a1, …, an ∈ N

(n ≥ 0) such that 〈a, a1〉, 〈a1, a2〉, …, 〈an, a′〉 ∈ E (i.e. there is a path from a to a′ in Γ).

Γ is acyclic iff no a ∈ N is such that a →Γ a; we write “DAG” as a shortcut for

“directed acyclic graph”. A node a ∈ N is terminal iff no a′ ∈ N is such that a′ →Γ a

(note that if Γ is acyclic, there is at least one terminal node). Term(Γ) is the set of all

terminal nodes of Γ, and NTerm(Γ) is the set of all non-terminal nodes of Γ (i.e.

NTerm(Γ) = N − Term(Γ)). A node a ∈ N is isolated iff no a′ ∈ N is such that a′ →Γ a

or a →Γ a′ (note that an isolated node is also terminal).

References

[1] A. Camurri, A. Coglio, “A Petri Net-based Architecture for Plant Simulation”, in

Proceedings of the 6
th
 IEEE Conference on Emerging Technologies and

Factory Automation, UCLA, Los Angeles, California (USA), September 1997.

[2] A. Camurri, A. Coglio, “Extended Simple Colored Petri Nets: A Tool for Plant

Simulation”, in Proceedings of the 1997 IEEE International Conference on

Systems, Man, and Cybernetics, Hyatt Orlando, Orlando, Florida (USA),

October 1997.

[3] A. Camurri, A. Coglio, Simple Colored Petri Nets, Technical Report, DIST,

University of Genoa, Italy, November 1997, available at ftp://

ftp.dist.unige.it/pub/infomus/Publications/scpnets.ps.zip.

[4] A. Camurri, A. Coglio, Specification of an Executor of Extended Simple

Colored Petri Nets, Technical Report, DIST, University of Genoa, Italy,

December 1997, available at ftp://ftp.dist.unige.it/pub/infomus/

Publications/specexec.ps.zip.

[5] K. Jensen, “Coloured Petri Nets: A High Level Language for System Design and

Analysis”, in G. Rozenberg (ed.), Advances in Petri nets 1990, Lecture Notes in

Computer Science, vol. 483, Springer-Verlag, pp. 342–416, 1990.

[6] T. Murata, “Petri Nets: Properties, Analysis and Applications”, in Proceedings

of the IEEE, 77(4), pp. 541-580, April 1989.

[7] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice Hall,

Englewood Cliffs, NJ, 1981.

