
Electronic Notes in Theoretical Computer Science 23 No. 3 (1999)
URL: http://www.elsevier.nl/locate/entcs/volume23.html 18 pages

The Control Component of
Open Mechanized Reasoning Systems 1

Alessandro Armando a,b Alessandro Coglio c

Fausto Giunchiglia d,e

a DIST, University of Genova, 16145 Genova, Italy
b LORIA-INRIA, 54602 Villers les Nancy, France

c Kestrel Institute, 94304 Palo Alto, California (U.S.A.)
d DISA, University of Trento, 38100 Trento, Italy

e IRST (Inst. for Scient. and Techn. Research), 38050 Trento, Italy

Abstract

We are interested in integrating mechanized reasoning systems such as, e.g., The-
orem Provers and Computer Algebra Systems. Our approach to the problem is to
provide a framework for specifying mechanized reasoning systems and to use speci-
fications as a starting point for integration. We build on top of the work presented
in [9] which introduces the notion of Open Mechanized Reasoning Systems (OMRS)
as a specification framework for integrating reasoning systems. An OMRS specifi-
cation consists of three components: the logic component, the control component,
and the interaction component. In this paper we focus on the control level and pro-
pose to specify the control component by first adding control knowledge to the data
structures representing the logic by means of annotations, and then by specifying
proof strategies via tactics. To show the adequacy of the approach we present and
discuss a structured specification of the top-level inference strategy of NQTHM as
a set of cooperating specialized reasoning modules.

1 Introduction

We are interested in integrating mechanized reasoning systems such as, e.g.,
Theorem Provers (TPs) and Computer Algebra Systems (CASs). The interest
in this problem stems from the consideration that even though a variety of
reasoning systems capable of very sophisticated reasoning activities in specific
domains are now available, the services provided by each single system hardly

1 We especially thank Paolo Pecchiari for his initial contributions to this work, and Carolyn
Talcott for contributing to the technical development of the theory.

c©1999 Published by Elsevier Science B. V.

Armando, Coglio, and Giunchiglia

encompass the wide range of functionalities needed in real-world applications
(e.g., the development of a mathematical theory, the development and valida-
tion of hardware and software components). However, it is often the case that
functionalities missing in a system are available in another. This is particu-
larly true for TPs and CASs due to the complementary nature of the services
provided (proving and computing, respectively).

By looking at the relevant literature it turns out that there are essentially
two possible strategies to cope with the problem: system extension and system
integration.

• System extension amounts to the implementation and addition of new func-
tionalities to the system of choice. This solution has the advantage that new
functionalities can be programmed so to fit the requirements of the host sys-
tem. The obvious drawback is that a considerable implementation effort is
often necessary. Moreover the level of sophistication of state-of-the-art im-
plementations is very difficult to achieve. Exemplary instances of projects
and experiences based on this approach is described in [6,5,12].

• System integration amounts to directly using the services provided by an
existing system (seen as an external and independent reasoner). In this case
no (or minor) implementational effort is necessary and the advanced features
and optimizations of existing systems can be directly used. The difficulty is
here due to the fact that reasoning systems are usually conceived and built
as stand-alone entities and—as a consequence—an effective combination can
be very difficult to achieve. A set of representative experiences showing the
viability of the approach is described in [1,13,14,2].

In both cases the main source of difficulty is the complexity of the services
provided by state-of-the-art implementations.

We build on top of the work presented in [9] which introduces the notion
of Open Mechanized Reasoning Systems (OMRS) as a specification frame-
work for extending or integrating reasoning systems. An OMRS specification
consists of three components: the logic component (specifying the assertions
manipulated by the system and the elementary deductions upon them), the
control component (specifying the inference strategies of the system), and the
interaction component (specifying the interaction of the system with the ex-
ternal world). While the problems arising in integrating reasoning systems at
the logic level have been addressed in [9], in this paper we focus on the control
level. We propose to specify the control component by:

(i) adding control knowledge to the data structures representing the logic
by means of annotations; this leads naturally to an extended notion of
inference which accounts for the simultaneous manipulation of logic and
control information;

(ii) specifying proof strategies via tactics, i.e., programs whose execution can
only deliver provable facts.

2

Armando, Coglio, and Giunchiglia

To give evidence of the adequacy of the approach we show how the resulting
specification framework allows for a structured specification of the top-level
inference strategy of NQTHM (called the waterfall) as a set of cooperating
specialized reasoning modules. The approach allows us (i) to provide a de-
tailed and formal account of all the information exchanged by the modules,
(ii) to neatly distinguish between the logic and the control components of the
information exchanged, and (iii) to describe in detail the way the specialized
modules are marshalled by NQTHM.

Even though the case study we consider does not address directly the
integration of CASs and TPs, it exemplifies an important integration problem
arising in such a context, i.e. the interplay between a general purpose reasoner
provided by a TP and a library of specialized procedures provided by a CAS.
Furthermore—as shown in [2]—the OMRS framework can be easily adapted to
support both the specification of the computational services provided by CASs
and their interaction with TPs. More in general, an OMRS specification can
be used to support a variety of fundamental activities, ranging from the design
and the implementation phases up to the formal analysis of the properties of
reasoning systems and the synthesis of provably correct reasoning components.
For instance, [3] shows the application of the OMRS framework to support
the activity of building a provable correct version of the ACL2 prover [15].

The paper is organized as follows. Section 2 gives an overview of our theo-
retical framework: we start by giving a formal account of the logic component
by introducing the notion of reasoning theory (Sect. 2.1); we then focus on
the control component by defining the notion of annotated reasoning theory
(Sect. 2.2) and the notion of tactic theory (Sect. 2.3); we finally illustrate how
reasoning theories, annotated reasoning theories, and tactic theories for differ-
ent modules can glued together yielding a composite specification (Sect. 2.4).
Section 3 gives a brief (but precise) description of the waterfall of NQTHM.
The OMRS specification of NQTHM is presented in Sect. 4.

Notations. We will make use of the following mathematical notations.
Given a set I, an I-indexed family S is an assignment of a set to each i ∈ I.
Si denotes the set assigned to index i. If I ′ ⊆ I, then SI′ denotes the set⋃

i∈I′ Si, and S | I ′ denotes the restriction of S to I ′ (which is a family). If S
is an I-indexed family and S ′ is an I ′-indexed family: we have S ⊆ S ′ if and
only if I ⊆ I ′ and Si ⊆ S ′

i for all i ∈ I; furthermore S∩S ′ is the (I∩I ′)-family
defined by (S∩S ′)i = Si∩S ′

i for all i ∈ I∩I ′; finally S∪S ′ is the (I∪I ′)-family
defined by (S ∪ S ′)i = Si ∪ S ′

i for all i ∈ I ∪ I ′ (where Si = ∅ if i ∈ I ′ − I

and S ′
i = ∅ if i ∈ I − I ′). Given a set A, A∗ is the set of all finite sequences

of elements of A. We use [], [h|t], s@t to denote the empty sequence, the
sequence with head h and tail the sequence t, and the concatenation of the
sequences s and t, respectively.

3

Armando, Coglio, and Giunchiglia

2 Overview of the Theory

2.1 Reasoning Theories

The logic component of an OMRS is specified by a reasoning theory (RTh)
[9]. An RTh is a mathematical object that, roughly speaking, consists of a set
of sequents (i.e., assertions) and a set of inference rules over such sequents.
Sequents can be schematic, i.e. contain place-holders for pieces of syntax. An
RTh in fact comes equipped with a set of instantiations that can be applied
to sequents to fill in schematic parts. An RTh defines a set of reasoning
structures, i.e. graphs labeled by sequents and rules. The notion of reason-
ing structure generalizes the standard concept of derivation so as to capture,
e.g., provisional reasoning and sub-proof sharing. In this paper we focus on a
subclass of RThs called equational RThs [7]. Equational RThs are character-
ized by sequents being equivalence classes (w.r.t. a set of equations) of terms
of an order-sorted signature [10]. In the sequel, since we will only deal with
equational RThs, we will omit the adjective “equational”, for brevity.

We first define a sequent system, as a quadruple Ssys = 〈Σ, X, E,Q〉.
Σ = 〈S,≤, O〉 is an order-sorted signature: S is a set of sort symbols, ≤ a
partial order over S, and O an (S∗ × S)-indexed family of operation symbols.
X is an S-indexed family of variable symbols, where Xs is countably infinite
for each s ∈ S. T is then the S-indexed family of Σ-terms over X , TΣ(X),
defined in the usual way. E is a set of equations t1 = t2, where t1, t2 ∈ Ts for
some s ∈ S. E induces a congruence relation ≡E over T , which defines the
S-indexed family T̃ of equivalence classes of terms. Q is a subset of S, i.e.
Q ⊆ S, which is both downward and upward closed in S (i.e., if s ∈ Q and
either s′ ≤ s or s ≤ s′, then also s′ ∈ Q). The set of sequents defined by Ssys

is Sq = T̃Q. In fact, Q identifies the sorts whose (equivalence classes of) terms
constitute the sequents. The set I of instantiations consists of sort-preserving
mappings from variables to terms. The application of an instantiation ι to a
sequent sq (i.e., variable substitution) is denoted by sq [ι], and the composition
of ι and ι′ is denoted by ι ◦ ι′.

An (inference) rule over a sequent system Ssys is a pair 〈 ~sq , sq〉 ∈ Sq ∗×Sq ,
where ~sq are the premises, and sq the conclusion. An RTh is a pair Rth =
〈Ssys, R〉 where Ssys is a sequent system, and R : L → Sq∗ × Sq is a labeled
set of rules over Ssys (i.e., a function from a set L of labels to the set of all
rules over Ssys).

Given an RTh Rth , we consider a subclass of reasoning structures, called
derivation structures [7], that for the purposes of this paper is defined to be
the set ∆ of proof trees of sequents in Rth. More precisely, ∆ is defined to be
the smallest set satisfying the following conditions, where we also define the
functions src : ∆ → Sq∗ (standing for ‘source’) and tgt : ∆ → Sq (standing
for ‘target’) so as to yield respectively the leaves (called open sequents) and
the root of the derivation given as input:

4

Armando, Coglio, and Giunchiglia

• ∀sq ∈ Sq : one(sq) ∈ ∆, src(one(sq)) = [sq], tgt(one(sq)) = sq ;

• ∀δ1, . . . , δn ∈ ∆, ℓ ∈ L, ι ∈ I, R(ℓ)[ι] = 〈[tgt(δ1), . . . , tgt(δn)], sq〉:
δ = dcons([δ1, . . . , δn], ℓ, ι) ∈ ∆, src(δ) = src(δ1)@ · · ·@src(δn), tgt(δ) = sq .

(In the above definition, one and dcons play the role of free constructors of
derivations.) Finally, if [δ1, . . . , δn] ∈ ∆∗ and δ ∈ ∆ are such that src(δ) =
[tgt(δ1), . . . , tgt(δn)], then ([δ1, . . . , δn]; δ) is a derivation obtained from δ by re-
placing the open sequents of δ with the corresponding derivation in [δ1, . . . , δn].
It readily follows that src([δ1, . . . , δn]; δ) = src(δ1)@ · · ·@src(δn) and tgt([δ1,
. . . , δn]; δ) = tgt(δ).

2.2 Annotated Reasoning Theories

The data structures manipulated by a reasoning system include both logical
and control information. This is formalized by the notion of (equational) an-
notated RTh (ARTh) [7]. Given an RTh Rth, an ARTh over Rth is a pair
ARth = 〈RthA, ǫ〉. RthA is an RTh, whose sequents encode both logical and
control information, and whose rules express how these two kinds of informa-
tion are manipulated together. Intuitively, RthA constitutes an “annotated”
version of Rth, where annotations represent control information. ǫ is an eras-
ing mapping from RthA to Rth, written ǫ : RthA → Rth . Intuitively speaking,
ǫ maps the (annotated) sequents and rules of RthA to their (non-annotated)
counterparts of Rth. In other words, ǫ “erases” the control information, leav-
ing the logical information untouched. More precisely, ǫ acts as a special case
of mapping from lists of terms to lists of terms (in the Lawvere theories asso-
ciated to the equational signature [16]) such that singleton lists of terms are
mapped either to singleton lists of terms or to the empty sequence, whereas
a non-singleton list, say [e1, . . . , en], is mapped to the concatenation of the
images of the singleton lists of the components, i.e. ǫ([e1])@ · · ·@ǫ([en]). By
identifying a singleton with its element, we can say that ǫ maps a term to
either a term or []. The intuition is that the terms of RthA contain both
logical and control information, while the terms of Rth only contain logical
information: ǫ maps a term tA of RthA either to a term t of Rth with exactly
the same logical content, or to [] (when tA encodes control information only).
In more detail, ǫ maps: each sort in SA either to a sort in S or to []; each
variable in XA either to a variable in X or to [], consistently with the sort
mapping; each term in RthA of the form o(x1, . . . , xn), with n ≥ 0, either to
a term in Rth or to [], consistently with the sort and variable mapping. ǫ

is extended homomorphically to all terms in Rth A. This naturally induces a
mapping from SqA to Sq .

It is required that for each rule RA(ℓA) = 〈 ~sqA, sqA〉 in RthA there is a
derivation structure δ in Rth such that src(δ) = ǫ(~sqA) and tgt(δ) = ǫ(sqA).
This requirement ensures that the rules in RthA are “sound” w.r.t. those in
Rth, because they “agree” on the logical content. Often, an annotated rule has
a non-annotated counterpart, in the sense that the corresponding derivation

5

Armando, Coglio, and Giunchiglia

structure consists of just the application of such non-annotated rule. It is
also common the case where the corresponding derivation structure turns out
to consist of only one sequent: this means that the annotated rule does not
modify the logical content but only the control one.

2.3 Tactic Theories

While an ARTh specifies how control information is encoded via annotations,
an ARTh does not specify the strategies employed by the system. In this
paper we focus on an important class of proof strategies specified as tactics.
Tactics, first introduced in LCF [11] and later adopted in many popular the-
orem provers such as NuPrl [8] and Isabelle [17], are an effective means to
specify backward proof strategies in a modular fashion.

We first define an (equational) tactic system as a quadruple Tsys = 〈Σ′, E ′,

T ′, F ′〉. Σ′ = 〈S ′,≤′, O′〉 is an order-sorted signature (as in a sequent system).
T ′ is then the S ′-indexed family of ground Σ′-terms, TΣ′ . E ′ is a set of equa-
tions t1 = t2 where t1, t2 ∈ T ′

s for some s ∈ S ′. E ′ induces a congruence

relation ≡E′ over T ′, which defines the S ′-indexed family T̃ ′ of equivalence
classes of terms. T ′ and F ′ are subsets of S ′, i.e. T ′ ⊆ S ′ and F ′ ⊆ S ′, which
are both downward and upward closed in S ′. Tac = T̃ ′

T ′ and Fail = T̃ ′
F ′ are

the set of tactics and failures (resp.) associated to Tsys .

Given an RTh Rth, an (equational) tactic theory (TTh) is a triple Tth =
〈Tsys, π,TR〉. Tsys is a tactic system. The operation symbols of Σ′ of arity
〈~s, s〉 with s ∈ T ′ and at least one element of ~s also in T ′, are called tacticals. π

is a (partial) injective mapping from
⋃

s∈T ′ Õ′
〈[],s〉 (i.e., the equivalence classes

of terms that are operation symbols of Σ′ of arity 〈[], s〉 with s ∈ T ′) to L

(the rule labels of Rth). The elements of the domain of π are called primitive
tactics. TR is a set of pairs of the form 〈[τ1 ⊳ sq1 ⇒ r1, . . . , τn ⊳ sqn ⇒ rn], τ0 ⊳
sq0 ⇒ r0〉 called tactic rules and written as

τ1 ⊳ sq1 ⇒ r1 · · · τn ⊳ sqn ⇒ rn
τ0 ⊳ sq0 ⇒ r0

where, for i = 0, 1, . . . , n, τi ∈ T̃ ′
T ′, sq i is a sequent of Rth, and ri is either a

failure of Tth or a pair 〈δ, ι〉 ∈ ∆× I.

If τ ∈ Tac, sq ∈ Sq , and r ∈ Fail ∪ (∆ × I), we say that the application
of τ to sq yields r, in symbols τ ⊳ sq ⇒∗ r, if and only if one of the following
cases holds:

(i) ∃ℓ ∈ L, ι ∈ I, R(ℓ) = 〈[sq1, . . . , sqn], sq
′〉 : π(τ) = ℓ, sq′[ι] = sq[ι],

r = 〈dcons([one(sq1[ι]), . . . , one(sqn[ι])], ℓ, ι), ι〉;
2

(ii) ∃ℓ ∈ L,R(ℓ) = 〈 ~sq , sq ′〉 : π(τ) = ℓ, (∀ι ∈ I : sq′[ι] 6= sq [ι]), r ∈ Fail;

(iii) ∃〈[τ1 ⊳ sq1 ⇒ r1, . . . , τn ⊳ sqn ⇒ rn], τ ⊳ sq ⇒ r〉 ∈ TR : ∀i = 1, . . . , n :
τi ⊳ sq i ⇒

∗ ri.

2 We implicitly assume that the variables in R(ℓ) are standardized apart in the usual way,
in order to avoid accidental “conflicts” with those in sq.

6

Armando, Coglio, and Giunchiglia

It is required that tgt(δ) = sq [ι] whenever τ ⊳ sq ⇒∗ 〈δ, ι〉.

The intuition captured by the above definitions is that a tactic system
defines a vocabulary of tactics and failures, and tactics represent non-deter-
ministic proof strategies. If the application of a tactic to a sequent yields a
derivation structure without open sequents, the tactic has succeeded in proving
the sequent. If it has some open sequents, the problem of proving the sequent
has been reduced to the (hopefully simpler) sub-problem of proving such open
sequents. If the returned instantiation is not the identity instantiation, an
instance of the original sequent is proved (or reduced to sub-problems): this
mechanism can be used to support provisional reasoning, where schematic
parts of sequents get instantiated during the deduction process. On the other
hand, when the application of the tactic to the sequent yields a failure, this
means that the tactic is unable to prove (or reduce) the sequent. By using
tacticals, applications of tactics can be combined together in various ways.
A TTh specifies the results of applying tactics to sequents. π identifies the
primitive tactics, i.e. those that correspond to the application of a single rule
of an RTh. The tactic rules in TR specify how applications of tactics are
combined together.

As a final remark, note that the notion of TTh has been given w.r.t. an
RTh. Indeed, such RTh is usually meant to be the component of an ARTh,
i.e. the one with annotated sequents and rules. Therefore, the specification of
the logic and control components of an OMRS is given by: an RTh Rth for
the logic component, and an ARTh ARth = 〈RthA, ǫ〉 over Rth together with
a TTh Tth over RthA for the control component.

2.4 Gluing

Specifying composition of OMRSs amounts to specifying how deductions car-
ried out by different components relate to each other. For example, a rewriter
calls a linear arithmetic decider that produces an inequality, and the inequality
is used by the rewriter to rewrite a term involving an arithmetic expression. In
order to specify relationships among deductions, it is required that the RThs,
ARThs, and TThs of the various components share some language and that
composition preserves the shared language and its meaning.

We first define composition of RThs [7]. Given sequent systems Ssys 0 and
Ssys1, we say that Ssys0 is faithfully included into Ssys 1, written Ssys0 →֒
Ssys1, iff S0, ≤0, O0, X0, E0, and Q0 are included into S1, ≤1, O1, X1, E1,
and Q1 respectively, and T1 | S0 = T0. In other words, Ssys0 →֒ Ssys1 iff Ssys1
“adds to” Ssys0 without “changing” it. Now, given sequent systems Ssys 1 and
Ssys2, we define shared(Ssys1, Ssys2) to be the sequent system given by the
intersection of Ssys1 and Ssys2 (i.e., S0 = S1 ∩ S2, etc.) We say that Ssys1
and Ssys2 are composable, written Ssys1 ✶ Ssys2, iff shared(Ssys1, Ssys2) →֒
Ssys1 and shared(Ssys1, Ssys2) →֒ Ssys2. If Ssys1 ✶ Ssys2, we define their
composition, Ssys 1+Ssys2, as the union of Ssys1 and Ssys2 (i.e., S = S1∪S2,

7

Armando, Coglio, and Giunchiglia

etc.). It can be shown that both Ssys1 →֒ Ssys1+Ssys2 and Ssys2 →֒ Ssys1+
Ssys2 (and shared(Ssys1, Ssys2) →֒ Ssys1 + Ssys2 as well). Given RThs Rth1

and Rth2, we say that Rth1 and Rth2 are composable, written Rth1 ✶ Rth2,
iff Ssys1 ✶ Ssys2 (i.e., the underlying sequent systems are composable) and
L1 ∩ L2 = ∅ (i.e., the rule labels are disjoint). If Rth 1 ✶ Rth2, we define the
composition Rth1 + Rth2 to be the RTh 〈Ssys1 + Ssys2, R1 ∪ R2〉.

Composition of ARThs is defined in terms of composition of the underlying
RThs in a natural way [7]. Given ARThs ARth1 = 〈RthA

1 , ǫ1〉 over Rth1, and
ARth2 = 〈RthA

2 , ǫ2〉 over Rth2, we say that ARth1 and ARth2 are composable,
written ARth1 ✶ ARth2, iff Rth1 ✶ Rth2, Rth

A
1 ✶ RthA

2 , and ǫ1 and ǫ2 agree on
shared(RthA

1 ,Rth
A
2). If ARth1 ✶ ARth2, we define ARth1 +ARth2 = 〈RthA

1 +
RthA

2 , ǫ1 ∪ ǫ2〉, which is an ARTh over Rth1 + Rth2.

Finally, composition of TThs is defined as follows. Given tactic sys-
tems Tsys0 and Tsys1, we say that Tsys0 is faithfully included into Tsys1,
written Tsys0 →֒ Tsys1, iff Tsys0 is included into Tsys 1, and in addition
T ′
1 | S0 = T ′

0 (analogous to sequent systems). Given tactic systems Tsys 1
and Tsys2, we define shared(Tsys1,Tsys2) to be the intersection of Tsys1
and Tsys2 (analogous to sequent systems). We say that Tsys1 and Tsys2
are composable, written Tsys1 ✶ Tsys2, iff shared(Tsys1,Tsys2) →֒ Tsys1 and
shared(Tsys1,Tsys2) →֒ Tsys2. If Tsys1 ✶ Tsys2, we define their composition,
Tsys1 + Tsys2, as the union of Tsys1 and Tsys2 (again, analogous to sequent
systems). It can be shown that both Tsys1 →֒ Tsys1 + Tsys2 and Tsys2 →֒
Tsys1 + Tsys2. Given TThs Tth1 and Tth2, we say that Tth1 and Tth2 are
composable, written Tth1 ✶ Tth2, iff Tsys1 ✶ Tsys2 (i.e., the underlying tactic
systems are composable) and π1 and π2 have disjoint domains. If Tth 1 ✶ Tth2,
we define the composition Tth1+Tth2 = 〈Tsys1+Tsys2, π1∪π2,TR1∪TR2〉.

It is easy to show that the composition operators + over RThs, ARThs,
and TThs are commutative, associative, and idempotent.

3 NQTHM as a Case Study

The following description of the top-level inference of NQTHM is derived from
[4] and the analysis of the actual LISP code of the system. Figure 1 depicts
the flows of terms, clauses and clause sequences among the data structures
and inference processes.

The user asks the system to prove a conjecture by supplying an NQTHM
term. (In NQTHM a term t, used where a formula is expected, stands for the
formula (t 6= F) [4, p. 31].) This term is first pre-processed : some of the avail-
able definitions are unfolded (pre-expansion) and then the resulting term is
turned into clausal form (clausification), as shown in the upper part of Fig. 1
(for now, ignore the leftmost arrow from the conjecture to the clausification).
NQTHM then tries to prove all the resulting clauses by means of six main infer-
ence processes (simplification, elimination of destructors , cross-fertilization,
generalization, elimination of irrelevance, and induction), called upon each

8

Armando, Coglio, and Giunchiglia

☛
✡

✟
✠CNJ.

☛
✡

✟
✠TOP

☛
✡

✟
✠POOL

✄✂ �✁PRE-EXPANSION

✄✂ �✁CLAUSIFICATION

✄✂ �✁SIMPLIFICATION

✄✂ �✁ELIMINATION OF
DESTRUCTORS

✄✂ �✁CROSS-
FERTILIZATION

✄✂ �✁GENERALIZATION

✄✂ �✁ELIMINATION OF
IRRELEVANCE

✄✂ �✁INDUCTION

❄
TERM

❄
TERM

❄
CLS.

❅❅
❄

CL.

❍
✻

CLS.

❄
CL.

❅❅

✻

CLS.

❄
CL.

❏
❏
❏

✻

CLS.

❄
CL.

❆
❆
❆

❆❆

✻

CLS.

❄
CL.

▲
▲
▲
▲
▲
▲▲

✻

CLS.

��✛
CL.

✻

CLS.

✻

CLS.

❆
❆❯

TERM

✑
✑

✑✑

◗
◗
◗◗ ✲

CLS.

Fig. 1. The top-level inference of NQTHM.

clause in turn, until no clauses are left. Each process returns zero or more
(supposedly simpler) clauses which replace the input clause; the provability
of the input clause is implied by that of the returned ones (i.e. from a logical
point of view these inference processes work backwards). The output clauses
are produced by these processes by means of different inference techniques,
e.g. the simplifier performs rewriting and typeset reasoning [4, Chapt. VI];
since here we only describe the top-level inference of NQTHM, we do not go
into the details of these techniques.

The clauses manipulated by NQTHM are stored in two data structures: the
Top and the Pool (shown in Fig. 1). The Top is a finite sequence of pairs whose
first element is a clause and second element is the history of the clause. A his-
tory of a clause cl is a finite sequence of triples [〈hid 1, cl1, hel1〉, . . . , 〈]hidn, cln,
heln〉, where each triple is called history component , each hid i ∈ {SI,ED,CF,
GE,EI} and is called history identifier (it identifies one of the first five main
inference processes) each cl i is a clause, and each hel i is a history element
(since they are not relevant to the top-level inference we do not specify them
here): such a history expresses that clause cl i+1 has been obtained from cl i
by applying the process identified by hid i, where cl = cln+1; histories are
updated by NQTHM as the proof progresses. The Pool is a finite sequence of
pairs whose first component is a clause and second component (called tag) is
either TBP (To Be Proved) or BP (Being Proved).

Just after the pre-processing, the Top is set to the sequence of resulting
clauses, each one equipped with the empty history (for now, ignore the leftmost
arrow from the clausification to the Pool in Fig. 1). The Pool is instead set

9

Armando, Coglio, and Giunchiglia

to the empty sequence.

While the Top is not empty, its first clause and history are picked up,
and fed into the simplifier, which returns a sequence of clauses and a history
element. If the returned sequence of clauses is equal to the singleton sequence
having as unique element the input clause then the simplifier has failed. Oth-
erwise the returned clauses are added to the head of the Top, each paired
with the history obtained by extending the input history with the history
component consisting of history identifier SI, the input clause, and the history
element returned by the simplifier. If the simplifier fails the clause and history
are fed into the elimination of destructors, cross-fertilization, generalization,
and elimination of irrelevance processes (in this order), until one succeeds. As
soon as one process applies successfully, the output clauses are added to the
Top analogously to the case of the simplifier. If none of the above processes
succeeds, then the clause, paired with the tag TBP, is pushed onto the Pool
(unless it is the empty clause, in which case NQTHM stops with a failure).
See the rightmost part of Fig. 1.

When the Top is empty, if also the Pool is empty NQTHM terminates
with success, because the conjecture has been proved; otherwise, the following
actions are performed. First, while the clause at the head of the Pool is
tagged by BP, the clause and the tag are removed (because the clause has
been proved). When the clause at the head is tagged by TBP, another clause
in the Pool is searched, which subsumes it. If one is found, then in case it
is tagged by BP NQTHM stops with a failure (because a loop in inventing
inductions is likely to be taking place), in case it is tagged by TBP the clause
and tag at the head are just removed and things proceed as above, when the
Top gets empty. Eliminating a subsumed clause is called cleaning the Pool.
If no subsuming clause is found, the tag is changed to BP and the clause is
fed into the induction process, which either cannot invent any induction, in
which case NQTHM stops with a failure, or produces a sequence of clauses
which are added to the head of the Top, each paired with the empty history
(see the central-lower part of Fig. 1; for now, ignore the fact that really clause
sequences, and not just clauses, go into the induction process); in this second
case, then the clause and history at the head of the Top are fed into the
simplifier, and things go as explained above.

For ease of understanding, in the above description we have omitted two
important features, which now we explain in detail, thus completing our de-
scription.

Just before pushing a clause onto the Pool, if either (1) the Pool is empty
and the history of the clause contains at least one history identifier other than
SI, or (2) the Pool is not empty and no BP is present in it, then a backtracking
is performed: Top and Pool are emptied, the conjecture is clausified (without
pre-expanding it), and the resulting sequence of clauses is pushed onto the Pool
as a whole, tagged by TBP (so that induction is performed upon the original
conjecture, see footnote at p. 90 of [4]), as shown in the leftmost part of

10

Armando, Coglio, and Giunchiglia

Fig. 1. In fact, the Pool really contains clause sequences (and not just clauses,
as we approximated above) paired with tags, and the induction process really
receives clause sequences as inputs. If none of the two backtracking conditions
is satisfied, then the singleton sequence of the clause, paired with TBP, is
pushed onto the Pool.

The second feature is motivated as follows: after inventing an induction
scheme, it is heuristically convenient both to prevent the rewriting of terms
appearing in the induction hypothesis, and to force the rewriting of terms
appearing in the induction conclusion (so that the hypothesis can be used to
prove the conclusion). For that purpose, the induction process also produces
two sets of terms as outputs (those appearing in the hypothesis and the con-
clusion), which are fed into the simplifier. Anyway, this special treatment
of the terms is only performed the first time the simplifier is called upon a
clause produced by the induction: to achieve that, as soon as the simplifier
fails upon a clause, its history is extended with a history component consist-
ing of a (sixth) settle-down history identifier SD (indicating that the clause
has settled down with respect to the special treatment of terms appearing in
induction hypothesis and conclusion), the clause itself, and the null history el-
ement nil, and the clause and new history are fed into the simplifier; however,
this does not happen if SD is already present in the history, and in that case
the clause and history are just fed into the elimination of destructors process.
The simplifier ignores the two input sets of terms iff SD is present in the input
history.

4 Specifying NQTHM as an OMRS

We now provide a modular specification of the top-level logic and control of
NQTHM by composing specifications for the main modules of the system, i.e.:

• user (U);

• waterfall (W);

• simplification (SI);

• elimination of destructors (ED);

• cross-fertilization (CF);

• generalization (GE);

• elimination of irrelevance (EI);

• induction (IN);

• pre-expansion (PE);

• clausification (CL);

• subsumption (SB).

The user module is responsible of pre-processing the user-supplied conjecture.
The waterfall module manages the distribution of the goal clauses between the
Top and the Pool, including the calls to the inference processes 3 . The pur-
poses of the other modules can be readily inferred from the description given
in Sect. 3. By composing RThs, ARThs, and TThs for the individual modules,

3 The name derives from a metaphorical analogy with a waterfall described in [4]

11

Armando, Coglio, and Giunchiglia

we obtain an RTh, an ARTh, and a TTh for the whole system. For the lack
of space we confine ourselves to specifying what is relevant to the top-level
inference of NQTHM. In particular, we do not consider further modulariza-
tions (e.g., simplification can be partitioned into rewriting, linear arithmetic,
type reasoning, etc.), even though the approach can be readily applied to the
specification of sub-modules. To simplify notation we introduce the following
set of labels N = {U,W, SI,ED,CF,GE,EI, IN,PE,CL, SB}.

4.1 A Reasoning Theory for NQTHM

The RThs of the component modules are Rth i for i ∈ N which are de-
scribed below. All these RThs are composable together, and their compo-
sition,

∑
i∈N Rth i, is an RTh for the whole system. RthU contains sequents

of the form (th ⊢ t), where th represents the current NQTHM theory (i.e. an
unordered collection of type and function definitions, axioms, and previously
proved conjectures), and t represents an NQTHM term 4 . Each such sequent
asserts that t is a logical consequence of the axioms in th . RthU also contains

sequents of the form (th ⊢ c̃l), asserting that the axioms in th entail the

clauses in c̃l (a clause is a set of NQTHM terms, considered disjunctively).
In addition, RthU contains sequents of the form (th ⊢ t = t′), asserting that
the term t′ obtained by unfolding some definitions in t is equal to the original

term t, and sequents of the form (t ↔ c̃l), asserting the logical equivalence

between a term t and its CNF translation c̃l . The rules of RthU are:

th ⊢ t = t′ th ⊢ t′

th ⊢ t
CallPreExp

t ↔ c̃l th ⊢ c̃l
th ⊢ t

CallClaus

(The backward application of) CallPreExp formalizes the activity of invoking
the pre-expander. It specifies that the provability of a term follows from the
provability of another term obtained by unfolding some definitions. Similarly
CallClaus formalizes the activity of invoking the clausifier.

RthW has sequents of the form (th ⊢ c̃l), (th ⊢ c̃l → c̃l
′
), and (c̃l ≺ c̃l

′
).

They respectively assert that the clauses in c̃l follow from the axioms of th,

that under the axioms in th the clauses in c̃l imply the clauses in c̃l
′
, and

that c̃l subsumes c̃l
′
. Note that the sequents (th ⊢ c̃l) are shared with RthU.

The rules of RthW are the following:

c̃l
′
≺ c̃l

′′
th ⊢ c̃l ∧ c̃l

′

th ⊢ c̃l ∧ c̃l
′
∧ c̃l

′′ ElimSubsum th ⊢ c̃l
′
→ cl th ⊢ c̃l ∧ c̃l

′

th ⊢ c̃l ∧ cl
CallInfProc

The rule ElimSubsum states that subsumed clauses can be eliminated. The
rule CallInfProc formalizes the activity of invoking the inference processes 5 .

4 More precisely, sequents are equivalence classes of terms in TU of the form (th ⊢ t),
where th and t are also terms in TU that describe theories and NQTHM terms, respectively.
However, for the sake of brevity, we neglect the distinction.
5 The sort for clauses is a subsort of the one for clause conjunctions, so it is legitimate to
write c̃l ∧ cl .

12

Armando, Coglio, and Giunchiglia

Logically, they specify that the provability of a conjunction of clauses is implied
by the provability of the conjunction of clauses obtained by replacing a clause
with a conjunction that entails it (e.g., the result of simplifying the clause).

RthPE and RthCL include sequents of the form (th ⊢ t = t) and (t ↔ c̃l),
respectively, which are shared with RthU. RthSI, RthED, RthCF, RthGE, RthEI,

and RthIN include sequents of the form (th ⊢ c̃l → c̃l
′
), shared with RthW.

RthSB includes sequents of the form (c̃l ≺ c̃l
′
), shared with RthW. These

RThs contain other kind of sequents, and contain rules to perform deductions
upon all their sequents. Since we are only interested in modeling the top-level
inference, we do not describe them here.

4.2 An Annotated Reasoning Theory for NQTHM

There is an ARTh for each RTh introduced in Sect. 4.1, namely ARth i =
〈RthA

i , ǫi〉 for i ∈ N . These ARThs are all composable together, and their
composition is an ARTh,

∑
i∈N RthA

i , for the whole system. RthA
U has sequents

of the forms (evh ⊢ t), (evh ⊢ t = t′), (t ↔ ocl), and (evh ⊢ top, pool ; ĩht , ĩct),
which constitute the annotated counterparts of the logical sequents (th ⊢ t),

(th ⊢ t = t′), (t ↔ c̃l), and (th ⊢ c̃l) of RthU. evh is the current NQTHM
event history, i.e. a sequence of type and function definitions, axioms and
proved conjectures, all annotated with heuristic information. ǫU(evh) yields
the underlying NQTHM theory, where all the heuristic information (as well
as the relative ordering of events) has been removed. ocl is a finite sequence
of ordered clauses considered conjunctively, and an ordered clause is a finite
sequence of NQTHM terms considered disjunctively 6 . ǫU(ocl) yields a set
of sets of NQTHM terms (an unordered conjunction of unordered clauses),
i.e. removes the ordering information. top represents the current Top: it is a
finite sequence of expressions of the form (ocl :hst), where hst is a history. pool
represents the current Pool: it is a finite sequence of expressions of the form
(ocl : tag), where tag is either BP or TBP. ǫU maps top to the conjunction
of its underlying clauses, and maps pool to the conjunction of its underlying

clauses tagged by TBP. ĩht and ĩct are finite sets of terms, respectively those
occurring in the induction hypothesis and conclusion (see Sect. 3). They are
erased by ǫU, as they only constitute control information. The rules of RthA

U

are the following:

evh ⊢ t = t′ evh ⊢ t′

evh ⊢ t
CallPreExpA

t ↔ ocl evh ⊢ sethst(ocl , []), []; ∅, ∅

evh ⊢ t CallClausA

where sethst(ocl , hst) denotes the sequence of clauses in ocl each paired
with history hst (the empty history in rule CallClausA above). Note that
CallPreExpA and CallClausA are annotated counterparts of CallPreExp and
CallClaus respectively.

6 In the sequel we neglect the distinction between clauses and ordered clauses. The context
will make clear what is intended.

13

Armando, Coglio, and Giunchiglia

RthA
W contains sequents (evh ⊢ top, pool ; ĩht , ĩct) (shared with RthA

U)

and (pool ≺ ocl) as annotated counterparts of (th ⊢ c̃l) and (c̃l ≺ c̃l
′
),

respectively. A sequent (pool ≺ ocl) asserts that the clauses in ocl are
subsumed by clauses in pool that are tagged by TBP (and not BP). Se-

quents (th ⊢ c̃l → c̃l
′
) in RthW indeed have three annotated counterparts,

namely (evh ⊢ ocl , hst ; ĩht , ĩct ❀ ocl , hel), (evh ⊢ ocl , hst ❀ ocl , hel), and

(evh ⊢ ocl ❀ ocl
′
; ĩht , ĩct) (where hel is a history element). For all three,

ǫW collects the clauses at the left and right of ❀ and puts them respec-

tively to the right and left of → (e.g., ǫW(evh ⊢ ocl ❀ ocl
′
, ĩht , ĩct) =

ǫW(evh) ⊢ ǫW(ocl
′
) → ǫW(ocl)). In addition, RthA

W also contains sequents
NoSomeHstId(hst , hid), AllHstId(hst , hid), and SomeTag(pool , tag). They re-
spectively assert that the history hst does not contain the history identifier
hid , that all history elements of hst contain hid as history identifier, and that
there is at least one tag tag in pool . Such sequents only consist of control in-
formation, in fact they are erased by ǫW. Rule CallInfProc has five annotated
counterparts, one for each inference process, namely CallSimpA, CallElDesA,
CallCrFerA, CallGenA, and CallElIrrA. To illustrate here is the rule CallElDesA:

evh ⊢ ocl , hst ❀ ocl , hel evh ⊢ sethst(ocl , [〈ED, ocl , hel〉])@top, pool ;ĩht , ĩct

evh ⊢ [(ocl :hst) | top], pool ; ĩht , ĩct
CallElDesA

The following rule formalizes the activity of marking the first clause of the
Top as “settled down” 7 :

evh ⊢ [(ocl : [〈SD, ocl , nil〉 | hst]) | top], pool ;ĩht , ĩct NoSomeHstId (hst ,SD)

evh ⊢ [(ocl :hst) | top], pool ; ĩht , ĩct
SettleDownA

The derivation structure corresponding to SettleDownA consists of one sequent,
i.e. the result of applying ǫW to either the first premise or the conclusion of
SettleDownA (they yield the same result). In fact, this rule only modifies
control information. The backward application of PushA

1 and PushA2 models
the act of pushing a clause into the Pool:

evh ⊢ top, [([[t | ocl]] :TBP)]; ĩht , ĩct AllHstId(hst ,SI)

evh ⊢ [([t | ocl] :hst) | top], []; ĩht , ĩct
PushA1

evh ⊢ top, [([[t | ocl]] :TBP) | pool]; ĩht , ĩct SomeTag(pool ,BP)

evh ⊢ [([t | ocl] :hst) | top], pool ; ĩht , ĩct
PushA2

Either PushA1 or PushA2 is applicable exactly when no backtracking needs to be
carried out — cf. end of Sect. 3. Finally, ARthW contains rules over sequents of
the form NoSomeHstId(hst , hid), AllHstId(hst , hid), and SomeTag(pool , tag)
which are not given here for the lack of space.

ARthPE and ARthCL include sequents of the form (evh ⊢ t = t′) and
(t ↔ ocl) respectively, both shared with ARthU. ARthSI, ARth IN, and

ARthSB include sequents of the form (evh ⊢ ocl , hst ; ĩht , ĩct ❀ ocl , hel),

7 nil indicates a history element that substantially contains no information; in fact, such
history element is never used by NQTHM.

14

Armando, Coglio, and Giunchiglia

(evh ⊢ ocl ❀ ocl
′
; ĩht , ĩct), and (pool ≺ ocl) respectively, all shared with

ARthW. ARthED, ARthCF, ARthGE, and ARthEI all include sequents of the
form (evh ⊢ ocl , hst ❀ ocl , hel), shared with ARthW. These ARThs also con-
tain other sequents, as well as rules over them, but we do not present them
here as they are not part of the top-level inference.

4.3 A Tactic Theory for NQTHM

There is a TTh for each ARTh introduced in Sect. 4.2, namely Tth i =
〈Tsysi, πi,TRi〉 for i ∈ N). These TThs are all composable together, and
their composition is a TTh,

∑
i∈N Tsys i, for the whole system. Each TTh has

a primitive tactic corresponding (via the π mapping) to an inference rule of
the associated ARTh. For instance CallPreExp, CallClaus, and PushOrig
are among the primitive tactics of TsysU and πU(CallPreExp) = CallPreExpA,
πU(CallClaus) = CallClausA, and πU(PushOrig) = PushOrigA. In addition,
each TTh has three tacticals ORELSE, THEN, and REPEAT, respectively of arities
〈[sF, sT, sT], sT〉, 〈[sT, sT, sT], sT〉, and 〈[~sF, sT], sT〉, where sF is a failure sort,
sT is a tactic sort, and ~sF is a sort for lists of failures. For notational conve-
nience we write (τ1 ORELSE(fail) τ2), (τ THEN [τ1, τ2]), and (REPEAT(fail) τ) in
place of ORELSE(fail , τ1, τ2), THENL(τ, τ1, τ2), and REPEAT(fail , τ), respectively.
We also assume that ORELSE associates to the right. Furthermore, each TTh
has a tactic idtac. ORELSE is used to try a tactic and, if it fails with a specific
failure, to try an alternative tactic. THEN is used to apply tactics in sequence.
REPEAT is used to exhaustively apply a tactic in sequence until specific failures
are returned. idtac is the “identity” tactic. To illustrate, here are the tactic
rules for ORELSE:

τ1 ⊳ sq ⇒ r

(τ1 ORELSE(fail) τ2) ⊳ sq ⇒ r
if r 6= fail

τ1 ⊳ sq ⇒ fail τ2 ⊳ sq ⇒ r

(τ1 ORELSE(fail) τ2) ⊳ sq ⇒ r

TthU includes tactics Nqthm, PreExp, Claus, and Waterfall. They are related
via the following tactic definition:

Nqthm = (CallPreExp THENL [PreExp,

CallClaus THENL [Claus, Waterfall]])

ORELSE(bktfail) (PushOrig THENL [Claus, Waterfall])

PreExp and Claus also belong to TthPE and TthCL, respectively, and their
application models the actions of the pre-expansion and clausification module,
respectively. Waterfall also belongs to TthW, which includes FiveProcesses,
as well as Simp, ElDes, CrFer, Gen, ElIrr, and Ind. The application of the last
six tactics models the actions of the six main inference processes of NQTHM.
These tactics of TthW are related by the following two tactic definitions:

Waterfall =

REPEAT([totfail, bktfail],

(Qed

ORELSE(fail) (FiveProcesses

ORELSE(fail)

(Push1 THENL [idtac, AllHstId])

15

Armando, Coglio, and Giunchiglia

ORELSE(fail)

(Push2 THENL [idtac, SomeTag])))

ORELSE(fail) ElimProved

ORELSE(fail) (ElimSubsum THENL [idtac, Subsum])

ORELSE(fail) (CallInd THENL [Ind, idtac]))

FiveProcesses =

(CallSimp THENL [Simp, idtac])

ORELSE(fail) (SettleDown THENL [idtac, NoSomeHstId])

ORELSE(fail) (CallElDes THENL [ElDes, idtac])

ORELSE(fail) (CallCrFer THENL [CrFer, idtac])

ORELSE(fail) (CallGen THENL [Gen, idtac])

ORELSE(fail) (CallElIrr THENL [ElIrr, idtac])

Such equations contain tactics AllHstId, NoSomeHstId, and SomeTag, which
are applied to sequents of the form AllHstId(hst , hid), SomeTag(pool , tag),
and NoSomeHstId(hst , hid). The application of the first two, in case of failure,
yields bktfail, while the application of the third one yields fail in case of
failure. Finally, Subsum, also in TthW, yields fail if no subsuming clause is
found, totfail if a subsuming clause is found but it is tagged by BP. The
other TThs contain some more tactics which are not described here for the
lack of space.

The tactic Nqthm is meant to be invoked upon a sequent of the form
(evh ⊢ t), which contains the current NQTHM event history and the user-
supplied conjecture to be proved. A simple analysis shows that Waterfall can
only fail with bktfail or totfail. In the first case, the ORELSE in the defini-
tion of Nqthm activates the backtracking tactic (i.e. (PushOrig THEN [Claus,

Waterfall])). If instead Waterfall fails with totfail, then Nqthm imme-
diately fails with totfail. This reflects the actual behavior of the system
(cf. Sect. 3). It is worth pointing out that the semantics of the ORELSE and
REPEAT tacticals differs from the traditional one (as given, for instance, in
[11,8]) in that they are sensitive to the identity of the failures generated by
the component tactics. This is necessary in our case study as the outermost
ORELSE must activate the backtracking tactic only in the event the first tactic
fails with bktfail, and immediately fail if totfail is returned.

5 Conclusions

In this paper we have proposed an approach to specifying the control com-
ponent of mechanized reasoning systems. The proposed approach amounts to
annotating the data structures representing the logic with control information,
and specifying proof strategies via tactics. We have showed the adequacy of
the approach by discussing the specification of the top-level inference strategy
of NQTHM as a set of cooperating specialized reasoning modules.

16

Armando, Coglio, and Giunchiglia

References

[1] Clemens Ballarin, Karsten Homann, and Jacques Calmet. Theorems and
Algorithms: An Interface between Isabelle and Maple. In A.H.M. Levelt,
editor, Proceedings of International Symposium on Symbolic and Algebraic
Computation (ISSAC’95), pages 150–157, 1995.

[2] P. G. Bertoli, J. Calmet, F. Giunchiglia, and K. Homann. Specification and
integration of theorem provers and computer algebra systems. In Jaques Calmet
and Jan Plaza, editors, Proceedings of the International Conference on Artificial
Intelligence and Symbolic Computation (AISC-98), volume 1476 of LNAI, pages
94–106, Berlin, September 16–18 1998. Springer.

[3] P.G. Bertoli. Using OMRS in practice: a case study with acl2. PhD thesis,
Computer Science Dept., University Rome 3, Rome, 1997.

[4] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.
ACM monograph series.

[5] Bruno Buchberger, Tudor Jebelean, Franz Kriftner, Mircea Marin, Elena
Tomuţa, and Daniela Vāsaru. A survey of the theorema project. In
Wolfgang W. Küchlin, editor, ISSAC ’97. Proceedings of the 1997 International
Symposium on Symbolic and Algebraic Computation, July 21–23, 1997, Maui,
Hawaii, pages 384–391, New York, NY 10036, USA, 1997. ACM Press.

[6] Edmund Clarke and Xudong Zhao. Analytica — A Theorem Prover in
Mathematica. In Proc. of the 11th Conference on Automated Deduction, pages
761–765, 1992.

[7] Alessandro Coglio, Fausto Giunchiglia, José Meseguer, and Carolyn Talcott.
Composing and Controlling Search in Reasoning Theories using Mappings.
Technical report, DIST, University of Genoa, Italy, May 1998.

[8] R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematics
with the NuPRL Proof Development System. Prentice Hall, 1986.

[9] F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning Theories: Towards an
Architecture for Open Mechanized Reasoning Systems. Technical Report 9409-
15, IRST, Trento, Italy, 1994. Also published as Stanford Computer Science
Department Technical note number STAN-CS-TN-94-15, Stanford University.
Short version published in Proc. of the First International Workshop on
Frontiers of Combining Systems (FroCoS’96), Munich, Germany, March 1996.

[10] Joseph Goguen and José Meseguer. Order-Sorted Algebra I: Equational
Deduction for Multiple Inheritance, Overloading, Exceptions and Partial
Operations. Theoretical Computer Science, 105:217–273, 1992.

[11] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF - A
mechanized logic of computation, volume 78 of Lecture Notes in Computer
Science. Springer Verlag, 1979.

[12] John Harrison. Theorem Proving with the Real Numbers. Springer Verlag, 1998.

17

Armando, Coglio, and Giunchiglia

[13] John Harrison and Laurent Théry. A Skeptic’s Approach to Combining Hol
and Maple. Journal of Automated Reasoning, 21:279–294, 1998.

[14] Paul Jackson. Exploring Abstract Algebra in Constructive Type Theory. In
Proc. of the 12th Conference on Automated Deduction, pages 590–604, 1994.

[15] M. Kaufmann and J S. Moore. acl2 Version 1.8 User’s Manual. Available on
line at http://www.cs.utexas.edu/users/moore/acl2/index.html.

[16] F. William Lawvere. Functorial semantics of algebraic theories. Proceedings,
National Academy of Sciences, 50:869–873, 1963. Summary of Ph.D. Thesis,
Columbia University.

[17] L. Paulson. The Foundation of a Generic Theorem Prover. Journal of
Automated Reasoning, 5:363–396, 1989.

18

